
PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

50

Parallel computing techniques for high-performance probabilistic 
record linkage

Peter Christen
Department of Computer Science

Markus Hegland, Stephen Roberts and Ole M. Nielsen
School of Mathematical Sciences, ANU Data Mining Group, Australian National University, Canberra ACT 0200

Tim Churches and Kim Lim
Epidemiology and Surveillance Branch, New South Wales Health Department, North Sydney NSW 2059

http://datamining.anu.edu.au/linkage.html

Abstract

Record linkage techniques are used to link together records from 
one or more data sets relating to the same entity, e.g. patient or 
customer. As data is often not primarily collected for data analysis 
purposes, a common unique identifi er is missing in many cases, 
and probabilistic linkage techniques have to be applied. Histori-
cal collections of administrative and other (health) data nowadays 
contain tens of millions of records, with new data being added 
at the rate of millions of records per year. Although improve-
ments in available computing power have to some extent miti-
gated against the effects of this accelerating growth in the size of 
the data sets to be linked, large-scale probabilistic record linkage 
is still a slow and resource-intensive process.

The ANU Data Mining Group is currently working in col-
laboration with Epidemiology and Surveillance Branch of the 
NSW Health Department on the development of improved 
techniques for probabilistic record linkage. Our main focus is 
the development of techniques that make good use of modern 
high-performance parallel computers, and the exploration of 
data mining and machine learning techniques to reduce the 
time consuming and tedious manual clerical review process for 
possible links. The developed software will be published under 
an open source software license. We hope to have prototype 
software available early in the second half of 2002.

1. Introduction

Record linkage is a rapidly growing fi eld with applications in 
many areas, including health research [1,6,8]. As data is often 
not primarily collected for data analysis purposes, a common 
unique identifi er is missing in many cases, and probabilistic 
linkage techniques [4] have to be applied. Record linkage is an 
initial step in many epidemiological studies and data mining 
projects, which aim to analyse large and complex data sets to 
fi nd patterns and rules, to detect outliers or to build predictive 
models of such data sets.

Historical collections of administrative and other health data 
nowadays contain tens or even hundreds of millions of records, 
with new data being added at the rate of millions of records per 
annum. Although improvements in available computing power 
have to some extent mitigated against the effects of this accel-
erating growth in the size of the data sets to be linked, large-
scale probabilistic record linkage is still a slow and resource-
intensive process. There have been relatively few advances over 
the last decade in the way in which probabilistic record linkage 
is undertaken, particularly with respect to the tedious clerical 
review process which is still needed to make decisions about 
pairs of records whose linkage status is doubtful. Unlike com-
puters, there has been no increase in the rate at which humans 
can undertake these clerical tasks.

This paper describes a project currently undertaken by the 
ANU Data Mining Group in collaboration with the Epidemi-
ology and Surveillance Branch of the NSW Health Depart-
ment. The aim of the project is to develop improved tech-
niques for probabilistic record linkage. The main interests are 
developing techniques for high-performance linkage on parallel 
computers, and the exploration of data mining and machine 
learning techniques to improve linkage quality and reduce the 
time consuming and tedious manual clerical review process for 
possible links.

The developed software will be published under an open 
source software license. It will allow researchers and users in the 
health area to link much larger data sets. Additional benefi ts 
will be reduced costs in conducting such linkages, which is due 
to the reduction in human resources needed and the free avail-
ability of the software. We hope to have prototype software 
available early in the second half of 2002.

2. Record Linkage and Data Cleaning

Record linkage techniques are used to link together data 
records relating to the same entities, such as patients or cus-



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

51

tomers. Record linkage can be used to improve data quality 
and integrity, to allow reuse of existing data sources for new 
studies, and to reduce costs and effort in data acquisition.

If no unique identifi er is available in the data sets to be 
linked, probabilistic linkage techniques [4] have to be applied. 
Moreover, data can be entered in various formats, and data 
items can be missing or they contain errors. A preprocessing 
phase that aims to clean and standardise the data is therefore an 
important fi rst step in every linkage process. Data sets may also 
contain duplicate entries, so linkage has to be applied within a 
data set to deduplicate it before linkage with other fi les can be 
attempted.

The process of linking records has various names in different 
user communities. While epidemiologists and statisticians speak 
of record linkage or data linkage, the same process is often 
referred to as data scrubbing or data cleaning by computer sci-
entists and in the database community. Historically, the sta-
tistical and the computer science community have developed 
their own techniques, and until recently few cross references 
could be found. In this Section we give an overview and try to 
identify similarities in the developed methods.

Computer assisted record linkage goes back as far as the 1950s. 
At this time, most linkage projects were based on ad hoc heu-
ristic methods. The basic ideas of probabilistic record linkage 
were introduced by Newcombe and Kennedy [13] in 1962 
while the theoretical foundation was provided by Fellegi and 
Sunter [4] in 1969. Using frequency counts [20], agreement 
and disagreement probabilities, each fi eld of a record is assigned 
a match weight, and critical values of these match weights are 
used to designate a pair of records either as a link, a possible 
link or a non-link. Possible links are those pairs for which 
human oversight, also known as clerical review, is needed to 
decide their fi nal linkage status. To reduce the number of com-
parisons (potentially each record in one data set has to be 
compared with every record in a second data set), blocking 
techniques are used. The data sets are split into smaller blocks 
using blocking variables, like the postcode or the Soundex 
encoding of surnames. Only records within the same blocks 
are then compared. To deal with typographical variations and 
data entry errors, approximate string comparisons [16] are 
often used for name and addresses. They usually return a score 
between 0.0 (two strings are completely different) and 1.0 (two 
strings are the same).

In recent years, researchers have been exploring the use of data 
mining techniques [18] both to improve the linkage process 
and to allow linkage of larger data sets. For very large data sets, 
with hundreds of millions of records, special techniques have 
to be applied [19] to be able to handle such large volumes of 
data. Sorting large number of records becomes the main bot-
tleneck, so extracting possible links from an unsorted large data 
fi le [21] has to be done as a preprocessing step before the actual 
linkage can be applied.

The terms data cleaning, standardisation and data preprocess-
ing are used synonymously to refer to the general tasks of trans-
forming the source data (often derived from operational, trans-

actional information systems) into clean and consistent sets of 
records which are suitable for record linkage or for loading into 
a data warehouse [17]. The meaning of the term standardisa-
tion in this context is quite different from its use in epidemiol-
ogy and statistics. The main task of standardisation in record 
linkage is the resolution of inconsistencies in the way infor-
mation is represented or encoded in the data. Inconsistencies 
can arise through typographical or other data capture errors, 
the use of different code sets or abbreviations, and differences 
in record layouts. Once the data has been standardised, the 
central task of record linkage is to identify records in the source 
data sets which represent the same real-world entity. In the 
computer science literature, this process is also called the object 
identity or merge/purge problem [7].

Fuzzy techniques and methods from information retrieval have 
been applied to solve this problem. One approach is to repre-
sent text (or records) as document vectors and compute the 
cosine distance [3] between such vectors. Another possibility is 
to use an SQL like language [5] that allows approximate joins 
and cluster building of similar records, as well as decision func-
tions that decide if two records represent the same entity. Other 
methods [10] include statistical outlier identifi cation, pattern 
matching, clustering and association rules based approaches. 
Sorting data sets (to group similar records together) and com-
paring records within a sliding window [7] is a technique 
similar to blocking as applied by traditional record linkage 
approaches. The accuracy of the matching can be improved 
by having smaller window sizes and performing several passes 
over the data using different keys, rather than having a large 
window size but only one pass. This corresponds to applying 
several blocking strategies in a record linkage process.

Even though most approaches described in the computer 
science literature use approximate string comparison operators 
and external lookup-tables to improve the matching quality, 
none considers the statistical theory of record linkage as devel-
oped by Fellegi and Sunter [4] and improved and extended by 
others.

The problem of fi nding similar entities not only applies to 
records of persons. Increasingly important is the removal of 
duplicates in web search engines and automatic text indexing 
systems, where copies of documents have to be identifi ed and 
fi ltered out before being presented to the user.

3. Parallel Computing

While high-performance computing was historically restricted 
to science and engineering, technological advantages in the 
last decade allowed the dissemination into the commercial 
IT world. Multiprocessor servers, also called symmetric multi-
processors (SMP), are nowadays common in many organisa-
tions as compute, database or web servers. These are equipped 
with a number of processors (CPUs), usually numbering from 
two up to around 30, have a main memory size in the one 
to several Gigabytes2 and they often have disk arrays (RAID) 
for improved availability with a capacity of several Terabytes3. 
These machines usually use a version of the Unix operating 



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

52

system which allows them to run a mixture of sequential as 
well as parallel jobs. Parallel applications use threads – pieces 
of program code that can run independently from others – for 
increased performance. For example, in a database server, each 
transaction can independently update records, or a web server 
can handle incoming requests simultaneously by processing 
them on different CPUs.

While multiprocessor servers are still fairly expensive, even 
ordinary personal computers (PCs) or workstations, connected 
by a local area network, can be used collaboratively as a (virtual) 
parallel computer using appropriate software packages. The 
computing power of a single PC nowadays is comparable to 
the capabilities of a supercomputer just a decade ago. Offi ce 
computers can easily be left on all the time, and these idle 
resources can be used for compute intensive jobs overnight and 
on weekends.

Record linkage in general, and the standardisation process 
especially, have a good potential for parallelism. The standardi-
sation of each record in a data set can be done independently 
from all others, which allows effi cient parallelism. The blocking 
technique used in the traditional record linkage process can be 
used as a starting point for a parallel record linkage system. In 
Section 5.5 we will describe our approach to parallelisation in 
more details.

4. Open Source Software

Using open source4 software instead of commercial software 
can have several advantages. Not only can people get the 
software at no cost, they can also access and modify the source 
code, and thus software can evolve and improve as a result 
of contributions from various parties. This is specially helpful 
for prototype software such as is the subject of this project. 
A rapid evolutionary development process often produces 
better software than the traditional closed model used in the 
development of commercial software. Examples of successful 
open source projects include the operating system Linux, the 
database server MySQL, the web server Apache (the most 
popular web server on the Internet), and the programming 
language Python.

For our record linkage project, we will be using Python5 
as the primary programming platform. Python is open 
source software, it is available for many platforms (including 
Windows, Macintosh and Unix), and it has a strong and active 
user community. Python has been demonstrated to be robust 
and able to handle large amounts of data effi ciently [2,14]. 
It provides a very easily learnt syntax while providing high-
level object-oriented features which make it suitable for the 
construction of large and complex systems. Python provides 
a very fl exible set of built-in data structures such as general 
lists as well as dictionaries (lookup-tables), which are imple-
mented as very effi cient hash-tables. Functions can be used 
as templates which can be changed and extended as needed 
by the user. Python is distributed with a number of exten-
sion libraries which contain a large collection of modules for 
all kinds of tasks, including regular expression parsing, array-

based numerical computation, statistics, Internet and Web 
data handling and encryption. Additionally, many third party 
modules are available which allow accessing and controlling 
of other (open source) software through a Python interface. 
For example, interface modules are available for most database 
systems. It is possible to readily extend the capabilities of 
Python through extension modules written in the C program-
ming language, as well as using the Python language itself. 
Thus, existing program libraries written in C can be seam-
lessly integrated into Python.

5. Prototype Software

In this Section we describe in more detail our approach to 
implement prototype software for parallel high-performance 
probabilistic record linkage. This software will be made avail-
able (in the second half of 2002) on the project Web page at: 
http://datamining.anu.edu.au/linkage.html

Only standard Python (Version 2.1) will be used for the fi rst 
version, so potential users will not have to install any other 
software packages. Portability of our software should there-
fore be possible to all platforms where Python is available 
(including Windows, Macintosh and Unix). Data access will 
in a fi rst version be limited to text fi les, but we are planning 
to include database (SQL) functionalities using the Python 
database interface later.

The prototype will contain two main modules, PYstandard.py 
for the standardisation process and PYlinkage.py for the actual 
record linkage. One aim is to simplify the confi guration 
process. Only one fi le (a module called confi g.py) will need 
to be edited and customised by the user. Within this fi le, data 
and lookup-table fi les, as well as standardisation and linkage 
parameters can be modifi ed and adjusted to a user’s needs. 
Instead of defi ning a new pattern matching language, which 
is the approach taken by the AutoStan [11] standardisation 
or data scrubbing program, only simple lookup-tables will be 
used. All other functionality, including sophisticated string 
handling and manipulation, will be implemented within the 
Python code. Due to the open source licensing of the software, 
users will be free to modify and enhance this functionality, or 
to request others to do so on their behalf. In time, we expect 
that different versions of the software will be developed for 
specifi c purposes or data sets.

5.1 Standardisation

Standardising a data set is an important fi rst step for successful 
record linkage. The standardisation module PYstandard.py can 
process four different components of a record, namely name, 
address, locality and date. The module opens input fi le(s), loads 
records and splits them into their constituent components, 
handing each component off to their corresponding parsing 
routines and fi nally combining the results into a new standard-
ised record which is then written into an output fi le. Addition-
ally, log and error information can be saved into fi les.



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

53

Table 1 Supported output fi elds

An input record is parsed and split into different output fi elds, 
as shown in Table 1. It is assumed that the input data is a text 
fi le and contains one record per line, with fi xed column width 
(i.e. each input fi eld occupies a well defi ned range of columns) 
or comma or tabulator separated fi elds. Parsed and standardised 
records are written into a new text fi le in comma delimited or 
column wise format. Other modes of input and output, such as 
reading and writing from and to a database, will be added in later 
versions. As the standardisation process can be done in parallel, 
more than one output fi le can be written (see Section 5.5).

Lookup-tables are used to correct nicknames, expand abbre-
viations and handle word spelling variations and typographi-
cal errors. Figure 1 shows an excerpt from a lookup-table for 
titles. If a word is found in the left column of the table, it is 
replaced with the corresponding word on the right column. 
These lookup-tables are implemented using effi cient Python 
mapping data structures known as dictionaries. Data for these 
lookup-tables can often be found on the Internet or purchased 
from third party suppliers. For example, Australia Post provides 
an updated list of all Australian postcode, suburb and state 
triplets6, while the Australian Whitepages contain street- and 
surnames (which can also be used to build frequency distri-
butions for the linkage process), and various other Web sites 
provide downloadable name and abbreviation lists.

Figure 1 Example lookup-table for titles

A separate parsing routine handles 
each of the four input components. 
It is assumed that the input to 
a parsing routine is a string that 
contains the corresponding com-
ponent of a record. The fi rst step 
in parsing a component consists in 
cleaning the input string by con-
verting all letters into lowercase, by 
removing unwanted characters and 
by replacing certain characters by 
others. For example, all forms of 
brackets are replaced by a vertical bar 
|. In a second step, lookup-tables are 
used to check for certain (compo-
nent specifi c) abbreviations, which 
are then replaced by corrected or 

expanded versions. For example, a.k.a. is replaced by known as 
in the name component, and the word also is removed (as it is 
not a necessary qualifi er for alternative names). Next, the input 
string is split into words and separators. The resulting list then 
only contains words and certain separator characters.

It is now easy to check if a word in this list is stored in a 
lookup-table. If so, it can be replaced with the corresponding 
corrected word and it’s type (e.g. title, surname, given name, 
etc.) can be determined. Separators mark the beginning and 
end of alternative names, and using the possible structure of 
an input component (e.g. titles are usually written before given 
names, which are then written before surnames), rules can be 
used to extract words into the appropriate output fi elds.

A new fi eld is added to each standardised output record, which 
contains status information for each of the processed input 
fi elds. A status code (in form of one character) is used per input 
fi eld. This status code can for example indicate if a postcode has 
been found in a postcode lookup-table, or if a given name has 
not been found in a given name lookup-table, but is assumed 
to be a given name because of its position in the input. The 
status fi eld can be used by the linkage process to get reliability 
measures for each fi eld of a record.

5.2 Linkage

Once data is cleaned and standardised, the linkage process can 
be started using the module PYlinkage.py. Probabilistic linkage 
techniques as described in Fellegi and Sunter [4] will be imple-
mented in this module. All linkage parameters (like cut-off 
scores, choice of blocking variables, etc.) can be adjusted by the 
user in the confi guration module confi g.py.

This module was still in the early stages of development at 
the time of writing and details will be published elsewhere. 
Some general comments on the parallelisation approach of the 
linkage process given in Section 5.5

5.3 Phonetic Encoding

Phonetic encoding is often used to create blocking variables. 

Component name address locality date

Fields givenname wayfaretype postcode day

middlenames wayfarename locality month

surname wayfarenumber localityqualifier year

title wayfareprefix territory

altsurname wayfaresuffix

Altsur2name unittype

altgivname unitnumber

dr dr

doctor dr

phd dr

doc dr

ms ms

mrs ms

miss ms

mr mr

mister mr



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

54

Several algorithms for phonetic encoding are available, the 
most populars being Soundex and NYSIIS. A third, more 
recently developed algorithm [15] is called Double-Metaphone. 
It accounts for non-english words, like European and Asian 
names. Similar to NYSIIS, Double-Metaphone returns a code 
only consisting of letters, while Soundex returns an alpha-
numerical code with a fi xed length of four. The following Table 
2 shows some example encodings.

Table 2 Phonetic word encodings

All three algorithms have been imple-
mented in the prototype software. Note that 
in some cases Double-Metaphone returns 
two codes, according to two different varia-
tions in pronunciation. In general, Double-
Metaphone seems to be closer to the correct 
pronunciation of names than NYSIIS. All 
of these phonetic codes are particularly sen-
sitive to errors in the fi rst letter of a name. 
Therefore, the software includes the ability 
to compute reverse codes from a reversed 
version of a string.

5.4 Approximate String Comparison

Algorithms for approximate string compar-
isons are important for good linkage results, 
as the numerical value they return is used to 
compute matching weights for string fi elds 
like names. Various algorithms for approxi-
mate string comparisons have been devel-
oped, both in the record linkage [16] and in 
the computer science and language process-
ing communities.

The Jaro string comparator and its modifi cation due to 
Winkler [16] are commonly used in record linkage software. 
They compute the number of common characters in two 
strings, the lengths of both strings, and the number of trans-
positions to compute a similarity measure between 0.0 (two 
strings are completely different) and 1.0 (both strings are the 
same). The Winkler comparator takes into account that typo-
graphical errors occur more often towards the end of words, 

and thus gives an increased value to 
agreeing characters at the beginning 
of the strings.

In the Bigram algorithm, the 
number of common bigrams in the 
two strings is counted and divided 
by the average number of bigrams in 
the two strings. Bigrams are the two-
character substrings in a word, e.g. 
peter contains the bigrams pe, et, te 
and er. The Edit distance algorithm 
counts the minimum number of 
deletions, transpositions and inser-
tions that have to be made to trans-
form one string into the other. The 
following Table 3 shows various 
examples and the resulting – nor-
malised – comparison results.

Table 3 Approximate string comparators

Word Soundex NYSIIS Double-Metaphone

peter p360 patar ptr

christen c623 chrastan krstn

ole o400 ol al

nielsen n425 nalsan nlsn

markus m622 marc mrks

hegland h245 haglan hklnt

stephen s315 stafan stfn

steve s310 staf stf

roberts r163 rabad rprts

tim t500 tan tm

churches c622 carc xrxs, xrks

kim k500 can km

lim l500 lan lm

Word A Word B Jaro Winkler Bigram Edit distance

shackleford shackelford 0.970 0.982 0.700 0.818

dunningham cunnigham 0.896 0.896 0.706 0.800

nichleson nichulson 0.926 0.956 0.625 0.778

jones johnson 0.790 0.832 0.400 0.429

massey massie 0.889 0.933 0.600 0.677

abroms abrams 0.889 0.922 0.600 0.833

hardin martinez 0.722 0.722 0.333 0.500

itman smith 0.567 0.567 0.250 0.000

jeraldine geraldine 0.926 0.926 0.875 0.889

marhta martha 0.944 0.961 0.400 0.667

michelle michael 0.869 0.921 0.615 0.625

julies julius 0.889 0.933 0.600 0.833

tanya tonya 0.867 0.880 0.500 0.800

dwayne duane 0.822 0.840 0.222 0.667

sean susan 0.783 0.805 0.286 0.600

jon john 0.917 0.933 0.400 0.750

jon jan 0.778 0.800 0.000 0.667

peter ole 0.511 0.511 0.000 0.200



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

55

5.5 Parallelisation

Both the standardisation and linkage processes have good 
potential for parallelisation, as they both consist of smaller 
independent sub-processes. In this section, we describe our 
approach to parallelising both processes. To our knowledge, no 
parallel record linkage software is currently available.

The standardisation of each record in the input data set(s) can 
be done independently of all other records. Thus, assuming P 
processors (or computing nodes) are available, each of these 
processors gets assigned (1/P)th of the input records. The 
PYstandard.py module gets as input arguments the range of 
records to standardise. For example, if 4 processors are avail-
able, and a data set with 100,000 records has to be processed, 
the fi rst processor gets records 1 to 25,000, the second proces-
sor gets 25,001 to 50,000, the third gets 50,001 to 75,000 and 
the forth processors gets the remaining records. Each of the 
processors then opens the input fi le, skips to its fi rst record and 
loads and standardises its part of the input fi le, before writing 
it into separate output fi les as explained below.

In the linkage process, the blocking technique serves as an 
excellent starting point for parallelisation. Blocking is used to 
reduce the number of comparisons. Input data is split accord-
ing to the values of blocking variables. For example, records 
with the same year of birth values are moved into separate 
blocks, and only records with the same blocking values are then 
compared. As no comparisons are conducted between differ-
ent blocks, each block can be processed independently from all 
others. For example, using year of birth as the blocking variable 
can result in up to around hundred blocks that can be proc-
essed independently. One problem with this approach is that 
blocks can contain different numbers of records which results 
in varying processing times. A dynamic load balancing strategy 
has thus to be applied in order to distribute the computing 
loads onto the processors. A master-worker approach [9] will 
be developed for the parallel record linkage process, where a 
master Python process will coordinate the worker processes by 
sending them blocks of records to be linked.

Figure 2 Sequential and parallel record linkage approach

For effi cient processing, the parallel standardisation process 
has to write the processed records into fi les to facilitate the 
parallel linkage process. Assuming B different blocks for the 
linkage, each standardisation process writes B smaller fi les, one 
per linkage block. If there are P parallel standardisation proc-
esses, a total of P x B fi les will be written. A linkage process 
(linking one block) then has to read P of these fi les and con-
catenate them to get all the records for one block. This can be 
done effi ciently in Python, and eliminates the need to sort or 
index the fi les, which is a time consuming process.

Figure 2 shows the sequential and parallel processes for record 
standardisation and linkage. The only additional step needed in 
a parallel record linkage system is to merge the fi nal outcomes 
of the parallel linkage into one single fi le. The exact mecha-
nism for doing this has yet to be developed.

5.6 Automating Clerical Review

One of the most tedious and time-consuming aspects of 
current record linkage practice is the clerical review process. 
In the probabilistic linkage model, each pair of records which 
have been compared is given a match weight. Pairs whose 
match weight is above a certain threshold are declared links, 
and pairs whose match weight is below another, lower thresh-
old are declared non-links. Records whose match weight fall in 
the ‘grey’ zone between these two critical values are denoted as 
needing clerical review, i.e. review by a person who is assumed 
to either have access to additional information external to the 
fi les being linked which enables them to resolve whether the 
pair is a match or not, or who is able bring to bear the power 
of human reasoning and perception in order to extract any 
residual hints or clues contained in the pair of records which 
enable a decision to be made regarding their link status.

In many circumstances additional, external information is 
simply not available, and thus the clerical review process 
involves the application of human intuition to try to resolve 
the doubtful cases. This process is acceptable for small linkage 
projects, but in larger projects, thousands or even tens of thou-
sands of pairs of records need to be reviewed in this manner. 
Apart from the tedium involved, it is often diffi cult to maintain 
consistency and repeatability when so many often arbitrary 
decisions need to be made regarding the link status of pairs of 
records.

An important aim of this project is to explore the utility 
of supervised machine learning algorithms [12] in the partial 
or total automation of the clerical review process. Supervised 
machine learning involves the use of examples in a training 
data set in order to instruct a learning algorithm to classify data 
– in this case pairs of clerical review records as either a link or 
as non-link.

The results of these investigations will be reported elsewhere 
as this work progresses.

6. Outlook

In this paper a project currently undertaken by the ANU Data 
Mining Group in collaboration with the Epidemiology and 
Surveillance Branch of the NSW Health Department has been 
presented. The prototype software currently under develop-
ment has been described in some detail. This software will 
be published later this year under an open source software 
license. It will allow researchers and users in the health area to 
link much larger data sets at reduced costs, due to the reduc-
tion in human resources needed and the free availability of the 
software.

Acknowledgments

This project is equally funded by the Australian National Uni-
versity (ANU) and the NSW Health Department under an 
AICS (ANU-Industry Collaboration Scheme) AICS #1–2001. 
The authors would like to thank everybody who supported 
this project and helped to make it happen.



PROCEED INGS

SYMPOSIUM ON HEALTH DATA LINKAGE

56

Endnotes

1 Corresponding author, email: Peter.Christen@anu.edu.au

2 1 Gigabyte = 1,024 Megabytes

3 1 Terabyte = 1,024 Gigabytes

4 http://www.opensource.org

5 http://www.python.org

6 http://www.post.com.au/postcodes

References

1. G.B. Bell and A. Sethi, Matching Records in a National Medical Patient 
Index, Communications of the ACM, Vol. 44 No. 9, September 2001.

2. P. Christen, O.M. Nielsen and M. Hegland, DMtools – Open Source 
Software for Database Mining, Workshop on Database Support for KDD (at 
the PKDD’2001 Conference), Freiburg, Germany, September 2001.

Available online at:

http://www.informatik.uni-freiburg.de/~ml/ecmlpkdd/WS-Proceedings/w09/
index.html

3. W.W. Cohen, The WHIRL Approach to Integration: An Overview, in 
Proceedings of the. AAAI–98 Workshop on AI and Information Integration. 
AAAI Press, 1998.

4. I. Fellegi and A. Sunter, A theory for record linkage. In Journal of the 
American Statistical Society, 1969.

5. H. Galhardas, D. Florescu, D. Shasha and E. Simon, An Extensible Frame-
work for Data Cleaning, Technical Report 3742, INRIA, 1999.

6. L. Gill, Methods for Automatic Record Matching and Linking and their 
use in National Statistics, National Statistics Methodology Series No. 25, 
London 2001.

7. M.A. Hernandez and S.J. Stolfo, The Merge/Purge Problem for Large 
Databases, in Proceedings of the SIGMOD Conference, San Jose, 1995.

8. C.W. Kelman, Monitoring Health Care Using National Administrative 
Data Collections, PhD thesis, Australian National University, Canberra, May 
2000.

9. V. Kumar, A. Grama, A. Gupta and G. Karypis, Introduction to Parallel 
Computing: Design and Analysis of Algorithms, Benjamin Cummings, 
Redwood City, 1994.

10. J.I. Maletic and A. Marcus, Data Cleansing: Beyond Integrity Analysis, 
in Proceedings of the Conference on Information Quality (IQ2000), Boston, 
October 2000.

11. AutoStan and AutoMatch, User’s Manuals, MatchWare Technologies, 
Kennebunk, Maine, 1998.

12. T.M. Mitchell, Machine Learning, McGraw-Hill, 1997.

13. H.B. Newcombe and J.M. Kennedy, Record Linkage: Making Maximum 
Use of the Discriminating Power of Identifying Information, Communica-
tions of the ACM, Vol. 5 No. 11, 1962.

14. O.M. Nielsen, P. Christen, M. Hegland, T. Semenova and T. Hancock, 
A Toolbox Approach to Flexible and Effi cient Data Mining, in Proceedings 
of the PAKDD–2001 Conference, Hong Kong, April 2001. Published in the 
Springer Lecture Notes in Computer Science, Artifi cial Intelligence series, 
LNAI2035.

15. L. Philips, The Double-Metaphone Search Algorithm, C/C++ User’s 
Journal, Vol. 18 No. 6, June 2000.

16. E.H. Porter and W.E. Winkler, Approximate String Comparison and its 
Effect on an Advanced Record Linkage System, Research Report RR97/02, 
US Bureau of the Census, 1997.

17. E. Rahm and H.H. Do, Data Cleaning: Problems and Current Approaches, 
IEEE Bulletin of the Technical Committee on Data Engineering, Vol. 23 No. 
4, December 2000.

18. V.S. Verykios, A.K. Elmagarmid and E.N. Houstis, Automating the 
Approximate Record-Matching Process, Information Sciences, Vol. 126, July 
2000.

19. W.E. Winkler, Quality of Very Large Databases, Research Report 
RR2001/04, US Bureau of the Census, 2001.

20. W.E. Yancey, Frequency-Dependent Probability Measures for Record 
Linkage, Research ReportRR00/07, Statistical Research Division, US Bureau 
of the Census, July 2000.

21. W.E. Yancey, BigMatch: A Program for Extracting Probable Matches from 
a Large File for Record Linkage, Research Report RR 2000–01, Statistical 
Research Division, US Bureau of the Census, March 2002.

 


